简介

欧美sss在线完整版8
8
网友评分
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
次评分
给影片打分《欧美sss在线完整版》
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
我也要给影片打分

  • 关注公众号观影不迷路

  • 扫一扫用手机访问

影片信息

  • 欧美sss在线完整版

  • 片名:欧美sss在线完整版
  • 状态:已完结
  • 主演:KarlWagner/MarianneGrothSvendsen/
  • 导演:Girls.Next.Door/
  • 年份:2017
  • 地区:欧美
  • 类型:科幻/恐怖/古装/
  • 时长:内详
  • 上映:未知
  • 语言:国语,韩语,日语
  • 更新:2024-12-14 20:49
  • 简介:1三角形解方程(chéng )的(👆)计算公(💂)式2求推荐有(🛳)什么暗黑类的(🐐)手(shǒu )游3俄罗斯苏1三角形解方程的(🤪)计算公式1过两点有且只有一条直(zhí )线2两(liǎ(🧡)ng )点互相间(jiā(🎒)n )线段最短3同角或(🎲)角的的补角(jiǎo )成比(🗿)例(🕹)4同角(😸)或等角的余角相(🐼)等5过一点有(yǒ(👴)u )且唯有一条(🎴)直线和试求直线垂线6直线外一点与直(🛋)线上各点连接到(dào )的所(🈷)有线段中垂(⤵)线(🚰)段(duà(🏫)n )最晚7互(🔐)相垂直(zhí )公理经由直线外一点有且(💆)只有一条直线与(🛎)这条(🤗)直(zhí )线互相垂直8假如两条直线(🙈)(xiàn )都和第三条直(🕙)线互(👈)相垂直这两条(tiáo )直线也互想垂直9同(tóng )位角成比(🐐)例(💛)两(liǎng )直(zhí(💈) )线互相垂直10内错(🕳)角之和两直线平行(👲)11同旁(páng )内角互补两直线(xiàn )互相垂直(🍧)12两直线互(🕡)相垂直同位角(jiǎo )大小关(🆑)系13两(🐢)直线(🧦)垂(🦖)直于内错角互相垂直14两直线互相(👷)平行同(📖)旁内角相(📻)补15定理三角(🔰)形左边的和(📔)为0第三(💟)边16推论三角(💠)形两边的差(chà )大于第(♎)三边17三(sān )角(🐜)形(🔳)内角和定理三角形三个内角的和(hé )418018推(🤬)论1直角三角形(👧)的两个锐角互(🍏)余19推论(🎻)2三(🦑)角形(👲)(xíng )的一(yī )个外角等于和它不(🚨)毗邻的两个内角的和20推(👄)论(lùn )3三角形(xíng )的(🧚)一(🎻)个外角大于任何一点一(🚹)(yī )个和它不(👨)垂直相交(🕘)的(🐨)内角(🔍)21全等(děng )三(🍾)(sān )角形的对应(yīng )边(🎎)随(suí )机角大小(🥇)关(guān )系22边(🥗)角边公理SAS有两(liǎng )边(🧞)和它们的(😡)夹角对应(😏)成比例的(☝)(de )两个三(🏑)角形全等23角边角公理ASA有两角和它们的(de )夹边填写之和的(🐒)两个三角(jiǎo )形全等(🥨)24推论AAS有两(🔚)角和(hé )其(qí )中一角的对(🚤)边随机之(🙀)和的(🍣)两(liǎ(🎳)ng )个三角(🚤)形全等25边边(biān )边公理SSS有三边填写(🤵)之和的(😨)两个三角形全(🤶)(quán )等(➖)26斜边直角(🐪)边公(gōng )理(lǐ )HL有斜边和(🐘)(hé )一(🌭)条直角(🆗)边填写相等的两个直角三(sān )角(jiǎo )形全等27定(🐤)(dì(🐈)ng )理1在(zài )角的平(😒)分线上的点到这样的角的两(💀)边的距(jù )离大(dà )小(🤵)关系(🥈)(xì(🏉) )28定理2到(🏓)一个角(jiǎo )的(de )两边的距离是一样的(💖)的点在这种(zhǒng )角(🎮)(jiǎo )的(de )平分线上29角的平(píng )分线(🚲)是到角(🎙)(jiǎo )的两边(🍚)距离(lí(🔮) )互相垂(🐁)直的所有点的集(🤒)(jí )合(🍹)30等腰三(🍂)角形的性质定理等腰三角(🙇)形的两个底角大小关系(🚀)即等边不(🛣)对(duì )等角31推论1等腰三角形顶角(🕕)的平分线(🎀)平分(fèn )底(🍯)(dǐ )边但是垂直于底边32等腰三角形的顶角平分线底(💐)边上的中线(🎇)和底边(🗜)上的高一起平(píng )行的(🥢)线33推(🕠)论3等(🚘)边三角形(xí(🐁)ng )的各角都成比例但是每(⚫)一(yī )个角都不等(děng )于(🔳)6034等腰(❣)三角(😣)形的可以(yǐ )判定定(🔨)理如果不是(🎊)一(🍒)个(🏨)三角形有两个角成比例这样的话这两(liǎng )个角(jiǎo )所对的(📲)边也成比例角(🌼)的平等关(guān )系(xì )边35推论1三个(😔)角都(🍟)成比例的三角形(😢)是(shì )等边(biā(🧔)n )三角形36推论2有一(🏏)个角不等(dě(🤯)ng )于60的等腰三角形是等边三角(🆚)形37在(🥞)直角三角形中(🍮)如果(🔽)一个锐(🤞)角不(➿)等(📻)于(🆔)30那么它(👦)所对(duì )的(de )直角(jiǎo )边(biān )等于零(líng )斜边的一(yī )半38直角三角形斜边上的中线(🎼)(xiàn )等于斜边上的一半39定理(🥢)线(xià(🈶)n )段直角平分(🧐)线上(shà(📏)ng )的点和这条线(➖)段两个端点的距离成比例(♓)40逆(🙍)定理和(hé )一条(🅰)线段两个端点距离(🖱)之(zhī )和(hé )的点(diǎn )在(😐)这条线段的(🙀)(de )垂(〽)直平分线上(shà(🔏)ng )41线段(duàn )的垂直(🤚)(zhí(🛺) )平(píng )分(🏩)(fèn )线可可(🏄)以表示和线段(🔜)两端(duān )点距(jù(🍀) )离互(🧛)相垂直的所有点(diǎ(♐)n )的集合42定理1关(guān )与(yǔ(🕐) )某条线段对(🕤)称(👚)的两个图形是全等形43定(dìng )理(🦑)2假如两个(gè )图形麻烦问(🆒)下(📷)某直线对称那就关于直线是按(😠)点连线(🥣)的垂(chuí )直平分线44定理(lǐ )3两个(gè )图形(xí(🐣)ng )关(guān )於(🌺)某直线对称要(💱)是它们的对(💐)应(🔥)(yīng )线段(🐛)或(👄)(huò )延长线交撞那就交点在对称轴上45逆定理如(rú )果两个(gè )图(✊)形(🧜)的对应点上(🍞)连接被同(🚛)一(🕟)(yī )条直线互相垂直平分那(nà )就这两个图形(🤚)跪求(🚋)这条直线对称46勾股定理直角(🔄)三(sān )角形两直(zhí )角边ab的(🥍)平方和等于零斜(🥤)边c的(💰)3即a2b2c247勾股定理的逆定理如果没有三角形的三边长(zhǎ(⏺)ng )abc有(🕐)关(〽)系a2b2c2那(nà )你这种三(✅)角形是(♍)直角(😡)三角形48定理四(🎣)边形的(⛱)内(🏎)角和等于零36049四边(biān )形的外角和36050n边形(📝)内(📧)角和(🕧)定理(♏)n边形的内(🥍)角的和n218051推论(🎴)横竖斜多(duō )边(biān )合作的外角和等于零36052平行四边形性(🍟)质(🛡)定理1平行四边形(📟)的对角相等53平行四(sì )边形(⚪)性质(📲)定(🐓)理2平行四边形的(〽)对边(biān )互相垂直54推论夹在两条平行线间(💘)的垂(🌝)直(♿)于线段互相垂(🧢)直(🔱)55平行(háng )四边(😊)形(xíng )性质定(dìng )理3平行四边(biān )形的对角线一起平(píng )分56平(píng )行四边形进一步判断定理1两(🌳)组对(⬇)角分别成比例(⚡)(lì )的四边形是平行四边形57平(píng )行四边形进(⛰)一步(bù )判断定理(lǐ )2两组对(duì )边分(🙎)别(👒)互(🤴)相(😈)垂直的四边(🛅)形是平行四边形58平行四边形(❗)直接判断定理3对(duì(🐃) )角(jiǎo )线互相(🏇)平分(🔴)的(de )四边形是平行四(sì )边形59平行(háng )四(🚨)边形(😺)不能判(🌟)断定理4一组对边垂直之(zhī )和的四边形是平行(🍏)四(📘)边(🌎)形(🏥)60平行四边形性质(🛩)定(dì(🏼)ng )理1矩形(xí(🦄)ng )的四个角大都直角61平行四边形性质定(🍨)理2平(🚀)行四边(🤵)形(xíng )的(⛺)对角线相(🈵)等62四边(🍋)形(🙇)可以判定(😄)定(dì(💘)ng )理1有三个角是直角(😴)的四边形是(shì(🚿) )三角(jiǎo )形(🚍)63三角(✝)形不(bú )能(néng )判断定理2对角线互相垂直的平行四边形(xíng )是四边形(xíng )64半圆性质定理1菱形的(👖)四(🌷)(sì )条边(biān )都之和65扇形(📣)性质定(🍋)理2菱形的对角线(🙈)(xiàn )互(♊)想垂线(🙆)而且每一条对角线平分一组对角66棱形面积(🎍)对角线(🐺)乘积(jī )的一半(🗝)即Sab267菱形(💍)进一步判断定理(🧐)1四边都相等(děng )的(🎳)四(💹)边(biān )形(🐡)是(shì )菱形68菱形直接判(pàn )断定(dìng )理2对(👷)角线一起垂线的平(🐑)行四边(biān )形是菱形69正(🚛)方形性质定(dìng )理(🎸)1正方形(✴)(xíng )的四个角是直角四(🤱)条边都互相(⬆)垂(chuí )直(📉)70正方(fāng )形性(🎙)质定理2正(🚧)方形的两(liǎng )条对角(🥃)线(⏩)(xiàn )成比例而且一起互相(➗)垂直(zhí )平分每条(tiá(🍭)o )对(🎴)角线平分一(⏯)组(zǔ )对角71定(dìng )理1麻烦问下中心对(⛩)称的两个图形是全等的72定理2关与中心对称的两(liǎng )个(🦐)图形对称中心(🌞)点连线都在对称点(🏼)中心并且被对称中心平(🍙)分73逆定理如果不是两个(🌲)图形的(📴)对应点连线都经由某一(💇)点(diǎn )并且被这一点平分那(⬅)你这两个图形关于这一(yī )点对称74等腰三角形性(🏛)质定理直角梯形在(zài )同(🎨)一(yī )底上(shà(🍠)ng )的(de )两个角互相垂直(zhí )75等(🔳)腰三角形(🔴)(xíng )的两条对(📹)角(🈳)线相等76等腰梯形进一(yī )步(bù )判断定理在同一底上的两个角(jiǎo )大小(xiǎ(👂)o )关系(xì )的梯(✊)(tī )形是等腰直角三角形77对角(🐭)线大(🔼)小关系(😻)(xì )的梯形是平行(háng )四边形78平(píng )行(⬆)线等(📳)分线段(duàn )定理假(jiǎ )如一组(zǔ )平行线在一条(tiáo )直线上(🐟)截得(🚤)的线段(duàn )大(🏓)小关系这样在别的(📱)直线(🗾)上截得的线(🌲)段也互相垂直79推(🎟)论(🐵)1经过梯(tī )形一(💩)腰的(de )中点与底垂直的直线必平分(📺)另一(yī(🌟) )腰80推论2当经过三角形一(🌊)边的中点与另(🎬)一边垂(chuí )直于的直线必平分第三边(🐠)81三角形中(💛)位线(👸)(xiàn )定(🗡)理三角形的(🚧)中位线平行于第三边(biān )并且4它(🅰)的一半(bàn )82梯(tī )形中(😭)位(😓)线定理(👶)梯形(🎬)的中(🌭)位线(xiàn )平行于两底并且4两底(🗯)和(hé )的(🎳)一半Lab2SLh831比例的基本是(🎈)性质如果abcd那就adbc如(rú )果adbc那(🛎)你abcd842合比性质(🦔)如果没(🤝)有(yǒu )abcd那你abbcdd853等比性(xìng )质(🤛)要(💜)(yào )是abcdmnbdn0那么acmbdnab86平(🖖)行线分线段成比(🐰)(bǐ )例定理(🏞)三条平行(háng )线截两(🐷)条直线(🍬)所得的对应线段(🈲)成比例(⛎)87推论(🐈)互相垂(🌲)直于三角形一边的(🌲)直线截那些两边或两边(🙂)的延长线所得的(💻)对应(🔖)线段成比(🏹)例88定理要是一(yī )条直线截三角形的两边或两(❗)边的(🕗)延长线所(suǒ(♍) )得(dé )的(➰)对应线段成比例(lì )那你这条直线互(💍)相垂直于(🐧)三角形的第三(👎)边89平行(💳)于三角形(xíng )的一边(biān )但是和其(🐯)他(💺)两边相交(jiāo )的直(🗿)线所截得的(de )三角形的三边(biān )与原三角形三边不对(〰)应成(☝)比(bǐ )例(🤩)90定理互相平行于三角形一边的直(🏋)线(xiàn )和(hé )其他两边(biān )或两边的延(yán )长(zhǎng )线相(🔸)触所构(gòu )成的三角(❕)形与原三角形几乎完全(🍤)(quán )一样91相似三角形直接(jiē )判(🥂)断定理1两角(🎨)不对应(🔡)之和(hé )两三角形有几分相似ASA92直(zhí )角三角形被斜边(🔏)上的(🔁)高分成(🍴)的两个直角三角形和原三角形相似(📥)93进一(yī )步判(🧛)断定理2两边对应成比(🕖)例且夹(🔵)角(jiǎo )之和两三角形相象SAS94进一步判(pàn )断定(🥛)理3三边(🌶)填写成比(🔈)例两三(⛪)角形相象SSS95定理(lǐ )假(📵)如(👙)一个直角三角形的斜(👳)边和(🔚)一条(👣)直(zhí )角边与(🔴)(yǔ(⚾) )另一个直角三角形的斜边和一条直角(🚢)边随机成比例那就这(zhè )两(🌻)个直(🌦)角三(🥐)角(📫)形有(😽)几(🆒)分相似96性质(📵)定理1相(xiàng )似三角形(🍌)按高的(🤟)(de )比按中线的比与对应(🧞)角平分(👔)线的比(bǐ(👮) )都几乎一样比97性质定理2相似三角形周长的比等于几乎完(🙌)全一样比(bǐ )98性质定(🚮)理3相似三(sān )角形(🍷)面积的比等(🙇)于相似比的平(píng )方99正二十边形锐角的正弦值(zhí )它的余(yú )角的余弦值任意锐角的余弦值等于它的余角(jiǎo )的正(zhèng )弦值100任(🚞)意锐角的正切值(🥝)等于它的余角的余切值(zhí )任意(yì )锐角(🕺)的(🤔)余切值等于它的(🚐)(de )余角的(🚷)(de )正切(🕧)值101圆是定点的距离定(🐒)长(zhǎ(🛥)ng )的点的(de )集(🧦)合102圆的内部也可以代入是圆(yuán )心的(de )距(🤢)离小于等于半径的点的集合(🎣)(hé )103圆的外(wà(🎯)i )部是可以n分之一是圆心的距(jù(⏮) )离大于0半径(jìng )的点的集(📮)合104同圆或等圆(🐪)的半径(🍸)相等105到(🍐)定(🛡)点的距离定(dì(🈴)ng )长的点(📔)的轨迹(🐵)是(shì )以定点为圆(♓)心定长为半径的圆106和设线(xiàn )段(🍕)两个端点的距离(lí )互相垂直的点的轨迹是着(💭)条(⚪)线(🔌)段(duàn )的垂直平分(🖋)线107到(dào )已知角的(de )两边距离互相垂(🏚)(chuí )直(zhí )的点的轨迹是这个角的平分线(xiàn )108到(♎)两条平行线(xiàn )距离(🏦)相(xiàng )等的点(✅)的(de )轨迹(🛠)是和这(🤵)两(🕒)条平(🌺)行线(🌒)互相垂直且(qiě )距离之和的一条直(🔇)线109定理在的同(👈)一(⛹)直线上的三点可以确定一(yī )个圆(yuán )110垂径(💀)定理互相(xià(🍄)ng )垂直于(🎄)弦(xián )的直(🌺)径平分这条弦而且平分弦所对(duì )的两条弧111推论(👼)1平(💶)(píng )分弦不是什(shí )么直径的(🛷)直径(🈹)(jìng )互相垂(🌽)直于弦因此平(🏬)分弦所(💐)对的(🔶)两条弧弦的垂直平分线(🚣)当经过(guò(🌪) )圆心另外平分弦所对的两条(tiáo )弧平(🏡)分弦(🍬)所对的一条(tiáo )弧的(de )直径平行平分弦另外平分弦(🌷)所对(duì )的另(lìng )一条(tiáo )弧112推论2圆的(de )两条(🕛)垂直(zhí )于弦所夹的弧成比例113圆是以圆(✝)心为对称(🐱)中(🐸)心的(😄)中心对(duì )称图形(📝)114定(🕖)理在同圆或等圆中之和的圆(yuán )心角所对(🛒)的弧成比例所(🎳)对的(de )弦相等所对的弦的(🅰)弦(xián )心距大小关系115推论在同圆(🌐)(yuán )或等圆中如(rú )果(⛰)不(🛅)是两(🏌)个(🕟)圆心角(jiǎo )两(liǎng )条弧两条(🍃)(tiáo )弦或两弦的(🕋)(de )弦心距(jù )中(🏘)有一组(zǔ )量相等这样它们所随机的其(🤸)余(🙁)各组量都大(dà )小关系(👛)116定理(👤)一条弧所对(👒)的圆周角不(🍧)等于(🚐)它所对的圆(yuán )心角的一(🦒)半(💆)117推论1同(🙅)弧或等(👷)弧所对的圆周角(jiǎo )互相垂直同圆或等(děng )圆中互相(👀)垂直的圆周角所(suǒ )对的弧也大(dà(📴) )小关系118推论2半(🏢)圆(🃏)或直(✒)径所对(duì )的(de )圆周角(🚊)是(shì )直角90的圆周角所对的弦是直(zhí )径119推论3如果(😕)不是三角形一边上的中线等于这(zhè )边的一(🧐)半这样(yàng )那个(📳)三角形是直角三角形120定理圆的内(🎦)(nèi )接四边形的对角(📠)相(🍟)辅相成而(🐵)且任何(hé(🐮) )一个外角都等于零它的(💸)内对角121直线L和O交(♓)撞(⏲)dr直(zhí(🏮) )线L和O相(🗳)(xiàng )切dr直线(xià(⛸)n )L和O相(xiàng )离(lí )dr122切线(😲)的进(📔)一步判断定理(lǐ(⏸) )经过半径的外端并且垂线于(🤸)(yú )这条半径的(🎲)直(👶)线是圆的切线123切线(xiàn )的(de )性(💦)质定理圆的(👃)切线(🔗)直角于经(👈)切点的半径124推(tuī(📵) )论1经由圆心且直角(💰)于(🏣)切线的(🦀)直线必经由切点125推论2经切点(📯)且互(🔅)相垂直于切线的(🔘)直线必经过(🤨)圆心126切线(🖼)长定理从圆(🕦)外(wài )一点引圆的两条(tiáo )切线它(📎)们的切线长相等(🚇)圆心和这一(💲)点(diǎn )的(🐦)(de )连线平分两条切线的夹角127圆的(😯)(de )外(wài )切四边(👭)形(🎱)的两组对边的和互(🛂)相垂直128弦(xián )切角定理(🤙)弦切(📸)角等于零它所夹(jiá )的弧(hú )对的圆周(zhōu )角129推论(🐘)要是两个弦切(🐭)角所夹的弧相(xiàng )等那么这两个弦切角也大小关系130相交(jiāo )弦定理圆内的两条线段弦被交(⬆)点分(🥜)成的两(🙄)条线段长的积大小关系131推论要是弦(🤳)与直径互(🅾)相(🧓)垂直相触那么(🦔)弦的一(🕙)半是它分直径所成的(💷)两条(🍇)线段的(de )比(⛱)例中项132切(qiē )割线(xiàn )定理从圆外一点(diǎn )引方形切线和割线切线长是(🥪)这一点到(🧔)割线(🛎)与圆交(jiāo )点(diǎ(🤧)n )的两条(⏺)(tiáo )线段(🚺)长的比例中项133推论从(🥘)圆(🔳)外一点引圆(🎒)的两条(tiáo )割(gē )线这一点(diǎn )到每条割(🌬)线与圆的交点的两条线段长的(🤱)积相等(📥)134假如两个(🕵)圆(🏯)相切那么(🚩)切点一定在风的心线上(💡)135两圆外离dRr两圆外切dRr两圆一(🍅)条直线RrdRrRr两圆内切(🕢)dRrRr两圆内含dRrRr136定理(🤔)线段两圆(🔚)的连心线平行平分两圆的公共弦137定(dì(🌇)ng )理(📡)把(bǎ(🍐) )圆分成(🔶)nn3顺次(cì(👤) )排列小脑上脚(🐙)各(gè )分点(🧢)所得的多边(🌜)形是这个圆的内(nèi )接(jiē )正n边形当经过(guò )各分点(😙)作(📆)圆的切线以垂(🥝)直相(🦋)交切线的交点为顶点(🥡)(diǎn )的多边(🛂)形是这种圆的外切正(🔁)n边形138定理完全没有正多边形应该有一个外接圆和一个(gè(😻) )内切圆这两个圆(🌬)是同心圆139正n边(biān )形的每个内角都等于n2180n140定理正n边(🕣)(biān )形的(de )半径和(hé(🕢) )边心距把正n边形(xíng )分(fèn )成2n个全(quán )等的直(zhí(🗡) )角三(sā(🥉)n )角形141正n边形的面积Snpnrn2p表示正(🦁)n边形的(de )周长142正三角形面(🏜)(mià(🦌)n )积3a4a表示边(biān )长143假如在一个顶点周围有k个正n边(biān )形的角(🔧)由于那(nà )些角的和应为360所以kn2180n360化成n2k24144弧(hú )长计算公式Ln兀R180145扇形面积公式(⤵)S扇(⏺)形(🥥)n兀(🛸)R2360LR2146内公(🚱)(gōng )切线长dRr外公切线(🏷)长dRr还有一些大家帮回答吧(🎄)实用工具具体方法(⛪)数学(🚚)公式公式分类公式表(biǎo )达式乘法与因(⏺)式(shì )分a2b2ababa3b3aba2abb2a3b3aba2abb2三角(🚦)不等式abababababbabababaaa一(yī )元(yuán )二(èr )次(🥣)方程的解bb24ac2abb24ac2a根与系数的关(guān )系(🚵)(xì )X1X2baX1X2ca注韦达定理判别式b24ac0注(🎊)方程(chéng )有两个互相(xiàng )垂直(zhí )的(de )实根b24ac0注方程有两个不等的实根(😋)b24ac0注方程就没实根有共轭复数根三(sān )角函数公式两角和公式sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课内1三角形横竖斜(👙)两边之和大于1第(🚧)三(🚋)边输(🍋)入(🍩)两边之(zhī(🛂) )差大于(yú )1第三(🔼)边(🐎)2三角形(🤫)内角和不等(📻)于1803三角形的外角等于(🏂)零不相距不远(yuǎn )的两(liǎ(♉)ng )个内角之和(🔯)小(🍑)于一丝一(yī )毫一个不(bú )东(⛲)北(🐈)边的内角(🎰)4全等三角(🦍)形的对应边和(hé )随机角大小(💼)关系5三边对应互相垂直(🦖)的两(liǎng )个三角形(⛱)全(quán )等6两边和它们(🥏)的(😏)夹角(jiǎo )按相等的两(🥢)个三角(✔)形全(🔏)等7两(💸)角(🦉)(jiǎo )和它们的(🦇)夹边按之(zhī )和的两个三角形全等(🔌)8两个角与(🚰)其中一个(gè )角的邻(lí(🌁)n )边(biān )按互(😆)相垂直的两个(🏦)三(🎵)角形全等9斜边和(😵)一条直角边按大小关系(💧)的(🤫)两(📲)个直角(jiǎo )三角(jiǎ(🔢)o )形全等(děng )10底边平等关(🅱)系角11等腰三(🛡)角形的(🚩)三线合一12面(miàn )所成对等(🀄)边13等边(biā(🌨)n )三角形的三个内角都相等但是(shì )平均(jun1 )内角都46014三个(gè )角(🕓)都(dōu )成比(bǐ )例(lì )的三角(jiǎo )形(🏟)(xíng )是等边(biān )三(⛹)角形(🦍)15有一个角不等于60的(😕)等(🎩)腰三(🧝)角形(xíng )是等边三角(😦)形16在(😯)直角(🛒)三(sān )角形中(🌵)假如一个(🦃)锐(🧛)角30这样(👌)的话它所对(⛳)的直角边等(dě(🔶)ng )于零斜边的一半17勾(gōu )股定(🍑)理18勾股定理的逆定理19三角形的中位线(😓)(xiàn )互相平行(💁)于第三边且4第三边的一半20直(🛣)角三角(🚰)形(😰)斜(🐦)边上的(🎩)中(🎷)(zhōng )线(xiàn )等于斜边的一半(🎹)21有几(🕥)分(🛺)相似多边(biā(🏁)n )形的(💊)对应角之和(hé(🔭) )对应边的比之和22互相平(🤔)行于(🕣)三角(jiǎo )形一(🏯)边(😖)的直线与那些两边相触所(📢)组成(🤴)的(🙀)三角形与原(🏐)三(🚉)角(🍪)(jiǎo )形几乎(😞)完全一(😲)样23如果两个(🥡)三角形(xíng )三组对应边的比大小关系这样的话这两个三角形有几(💏)分(🌚)相似24假(🐏)如(rú )两个三角形两组对应边的比互相垂直(🔑)并且相对应的夹角互(🚼)相垂直这样的话这两(liǎng )个(gè )三(sān )角(♟)形有几分相似25如果没有(yǒu )一个(📔)三角形的两(🚲)(liǎng )个角与另一个三(😬)角(👸)形的两个角(🏉)按成(🤼)比例这样(🦅)这两个(💒)三角形有(🍕)几(jǐ )分相似26相似(sì )三角形的周长比等于有几分相似比(🥐)27相似三角形(xíng )的面积比等于相象比(🙂)的平方(fāng )28锐角(🤽)三角函数课外(🕶)1海(💁)伦公式假设有一个三角形边长(🌀)分别(bié )为abc三角形的面积S可由200元以(🖥)内公式易求(qiú )Sppapbpc而公式里的p为半(bàn )周长pabc22三(🚽)角形重心(💲)定理(lǐ )三(🥒)角形的三条中线交于一点这一点就是三(sān )角(jiǎo )形的重心三角形的(🔁)重心(xī(😎)n )是五条(♑)中线的三等(😫)分点3三角形中线公式(shì )在ABC中AD是中线那么(me )AB2AC22BD2AD24三(sān )角形(xíng )角平分(fèn )线公(✌)式在(zài )ABC中AD是角平(pí(🗡)ng )分(🔀)线那你BDABCDAC我希望对(🌰)(duì )你(🐗)有(yǒu )帮助2求(qiú )推荐有什(shí )么暗黑类的手游不过说实话(🔖)而(🦄)言只(zhī )有一(🙎)款暗黑类游(🔒)戏是原汁原味(wè(😨)i )移植(zhí )者(zhě )到移动端的(💺)泰(⛲)坦之旅我购买(🖋)了ios版其他(👅)就还(🌜)没有了对(duì )是真的就没了(😠)如果不是你(nǐ )觉着那些几个(gè )白(bái )痴(🌪)一样的手游算的话(🌰)那就请容许我(🗑)看不起你的(😺)品味3俄罗斯苏说是(🍿)是叫(🔣)重罪(zuì )犯体现(🏑)了什么(me )出对(🙄)俄罗斯(sī )对苏(sū )一57很惊惧象以前给(gěi )图一(♊)160取名字海盗(dào )旗一样(🤭)可能会是恨(🈁)的(♑)牙根痒得难受又怕的(🔐)半(🍼)(bàn )死而(🥫)且欧(ōu )洲双风一狮完全没(👖)(méi )有就不是对手

为你推荐

 换一换

评论

共 0 条评论